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The VP24 protein plays an essential, albeit poorly understood role in the filovirus life cycle. VP24 is only 30% identical between Mar-
burg virus and the ebolaviruses. Furthermore, VP24 from the ebolaviruses is immunosuppressive, while that of Marburg virus is not.
The crystal structure of Marburg virus VP24, presented here, reveals that although the core is similar between the viral genera, Mar-
burg VP24 is distinguished by a projecting �-shelf and an alternate conformation of the N-terminal polypeptide.

Marburg virus (MARV) and the ebolaviruses are filamentous,
enveloped, negative-sense, single-stranded RNA (ssRNA)

viruses that belong to the family Filoviridae and can cause severe
hemorrhagic fever in both humans and nonhuman primates. The
Marburgvirus genus contains one species, which is eponymously
named Marburg virus (1). Marburg virus was the first filovirus to
be identified when, in 1967, Marburg virus-infected primates sick-
ened laboratory workers in Germany and Yugoslavia (2). Al-
though early outbreaks were associated with 20 to 40% lethality,
more recent outbreaks have been associated with greater pathoge-
nicity and nearly 90% lethality in humans (3, 4). In the Ebolavirus
genus are five viruses, termed Ebola virus, Sudan virus (SUDV),
Reston virus, Taï Forest virus, and Bundibugyo virus. Among the
five ebolaviruses, Reston virus appears to be nonpathogenic to
humans, although exposure data are limited (5, 6).

Filoviruses encode just seven genes, encoding NP (nucleopro-
tein), VP35 (nucleocapsid), VP40 (matrix), GP (glycoprotein),
VP24 (nucleocapsid), VP30 (transcription factor), and L (RNA-
dependent RNA polymerase). In the ebolaviruses, the nucleocap-
sid-associated proteins VP24 and VP35 are known to be immu-
nosuppressive (7, 8, 10, 11, 14). In Marburg virus, VP35 and VP40
are immunosuppressive (12), while curiously, Marburg virus
VP24 is not. Ebola virus VP24 blocks phosphorylation of p38 mi-
togen-activated protein kinase (13) and inhibits signaling down-
stream from both alpha/beta interferon (IFN-�/�) and IFN-� by
sequestering NPI-1 family karyopherin � proteins (�1, �5, and
�6) (11, 14). Binding to these proteins prevents them from shut-
tling activated, phosphorylated STAT1 to the nucleus (11, 14, 15).

Although Marburg virus VP24 is not immunosuppressive, it
nonetheless is essential for the virus life cycle. VP24 is bound to the
ribonucleoprotein complex in the virion (16), influences the forma-
tion of infectious virus particles (17), and like VP24 of Ebola virus,
may function in transcription and replication (18–20). No crystal
structure of Marburg virus VP24 is yet available. Hence, we set out to
determine the structure of this VP24, with its different functional
phenotype, in order to provide a 3-dimensional (3-D) template for
exploration of the differences between Marburg and ebolavirus and
the function(s) of VP24 in the Marburg virus life cycle.

A construct of Marburg virus (strain Musoke) VP24 spanning
residues 1 to 241 (MARV VP241-241) in the pET46 Ek/LIC vector
was expressed and purified as previously described for ebolavirus
VP24 (21). A 12-residue C-terminal truncation improved protein
stability, homogeneity, and crystallizability. MARV VP24 was
crystallized in 0.1 M N-(2-acetamido)iminodiacetic acid (ADA)
(Hampton Research), 0.1 M lithium acetate, 20% glycerol, 2%
(vol/vol) polyethylene glycol (PEG) 400, and 8% (vol/vol) PEG

4000 by the hanging-drop vapor diffusion method at 22°C. An
amount of 0.2 �l of seed stock was added to the 1.8-�l drop during
the initial crystallization set up. Crystals were flash frozen in liquid
nitrogen and cryoprotected with unmodified reservoir solution.
Diffraction data to 2.65Å were collected at 100 K on Beamline
8.2.2 (Advanced Light Source, Berkeley, CA) and were processed
with HKL-2000 (Table 1) (22).
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TABLE 1 Data collection and refinement statistics for MARV VP241-241

crystals

Parameter Value(s)

Data collection
Space group P1
Cell dimensions

a, b, c (Å) 42.2, 48.1, 64.1
�, �, � (°) 88.4, 78.7, 71.3

Resolution (Å) 50–2.65
Solvent content (%) 43
Rsym

a (%) 0.06
I/�(I) 12.8 (2.2b)
Completeness (%) 98.1
Redundancy 2.1

Refinement
Resolution (Å) 40–2.65
No. of reflections 13,245
Rwork/Rfree 18.0/25.5
No. of atoms of:

Protein 3,685
Water 48

RMSDc

Bond length (Å) 0.003
Bond angle (°) 0.62

Ramachandran plotd

Most favored 96.2
Additionally allowed 3.8
Generously allowed 0.0

Disallowed 0.0
a Rsym � �|(I � 	I
)|/�(I).
b Value in parentheses refers to the last shell.
c RMSD, root mean square deviations.
d MolProbity was used to define the indicated regions of the Ramachandran plot.
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The structure of MARV VP24 was determined by molecular
replacement in Phaser (23) and CCP4 (24), using residues 1 to 233
of Sudan virus VP24 (SUDV VP241-233) as a search model (25).
Refinement was performed with Phenix.refine (26, 27), and re-
building performed in COOT (28). The initial rounds of refine-
ment included TLS parameters (29). The quality of the structure
was validated with MolProbity (30) and Procheck (31), with 97%
of residues in the most favored region of the Ramachandran plot
and no residues in the disallowed regions. The final R and Rfree

were 20 and 27%, respectively, with 5% of reflections reserved for
Rfree calculations. There are two copies of Marburg virus VP24 in
the crystallographic asymmetric unit, termed copy A and copy B.

Marburg virus VP24, like our previously determined ebolavi-
rus VP24 structures (from Sudan virus and Reston virus) (25),
adopts a single-domain �/� structure with the overall shape re-
sembling a pyramid (Fig. 1). Also like VP24 of the ebolaviruses,
two neighboring concave pockets are located at the bottom of the
Marburg virus VP24 pyramid. The residues contained inside these
pockets are highly conserved across the filovirus family.

One difference between Marburg virus VP24 and VP24 of the
ebolaviruses is found in the bottom platform of the VP24 pyra-
mid, above the conserved pockets. Here, residues 201 to 217,
which lie at the interface between face 2 and face 3, appear as long

�-strands (�17 and �18) that form part of a greater �-sheet. The
two strands jut out from the pyramid to form a shelf (Fig. 1). In
Sudan virus VP24, residues 201 to 217 form much shorter
�-strands, with the central residues instead adopting a flexible
loop structure that contains a small helix (Fig. 2). In Reston virus
VP24, these residues are disordered and are not observed in the
crystal structure (25).

In both ebolavirus VP24s, amino acid residues 142 to 146 form
a short �-helix at the top of the pyramid (25) and are proposed to
interact with karyopherin �1 (11). These residues also appear as
an �-helix in copy B of Marburg VP24 but form a mostly nonhe-
lical loop structure in copy A (Fig. 3A and B). Differences in the
structure appear to be dictated by differences in crystal packing, as
the central Tyr144 is rotated 180° between the two monomers
(Fig. 3B). Both conformers are likely available to VP24 in solution.

The N termini of both Ebola (Zaire) virus and Marburg virus
VP24 are thought to be important for nucleocapsid formation and
oligomerization (17, 32, 33). In each copy of VP24 crystallized for
an ebolavirus (Sudan virus and Reston virus), the N terminus
forms a rigid �-helix that extends from the apex of the pyramid to
bind into the conserved hydrophobic pocket in face 3. In contrast,
in both copies of Marburg virus VP24, the N terminus (residues 1
to 23) does not form a rigid helix but instead forms an extended

FIG 1 Overall architecture of Marburg virus VP24. (A to C) Faces 1 to 3 of the pyramidal VP24 structure are illustrated in rainbow coloring from the N terminus
(navy blue) to the C terminus (red). The extended beta shelf formed by strands �17 and �18 is visible on the right of face 2 and the left of face 3. The descending
N terminus of Marburg virus VP24 connects to the protein body via residues 13 to 20, which are disordered. (D) Topology diagram of Marburg virus VP24, with
secondary structure elements sequentially numbered and colored from N to C as described for panels A to C. �-Helices are indicated by cylinders, and �-strands
by arrows. Panels A to C were produced using Pymol (Delano Scientific) (34), and the topology diagram using Pro-origami (35).
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flexible strand that reaches across to a neighboring copy of Mar-
burg virus VP24, with residues 1 to 10 binding into a groove along
the base of the pyramid (Fig. 3C). Approximately 770 Å2 of mo-
lecular surface is buried by the 10 residues participating in this
interaction. Contact here is mediated by the main chain atoms of
the N-terminal peptide, as well as side chain atoms of Leu 4, Arg 7,
Tyr 8, Asn 9, and Leu 10. Each of these residues, except Leu 4, is
completely conserved across the filovirus family (Fig. 2C). Leu 4 is
replaced by Ala 4 in the ebolaviruses. These residues were deleted
from constructs used to determine the Reston virus (4D9O) and
the 2.1-Å Sudan virus (3VNF) VP24 structures to limit aggrega-
tion. They were included in material used to generate the subse-
quent 2.0-Å Sudan virus structure (3VNE), but residues 1 to 8 are
disordered in the resulting electron density maps (25).

In summary, the overall structural conservation observed be-
tween VP24 of Marburg virus and the ebolaviruses supports their
common essential functions in viral assembly and function. The
reasons why Marburg virus VP24 is not immunosuppressive re-
main elusive, however. Marburg virus and Ebola virus VP24 are
70% different in sequence, and the precise residues responsible for
the difference in immunosuppression are unknown, as are the
precise role(s) of Ebola virus VP24 in immunosuppression. The
crystal structure of Marburg virus VP24 presented here now pro-
vides the 3-D template for directed functional exploration of the
multiple roles of VP24 in the Marburg virus life cycle and key
differences between Marburg virus and the ebolaviruses in immu-
nosuppression.

Protein structure accession number. The atomic coordinates

FIG 2 Differences between Marburg virus and ebolavirus VP24s. (A) Marburg virus (MARV) and Sudan virus (SUDV) VP24 structures are superimposed and
illustrated with face 3 oriented toward the viewer. Conformational differences in �13 between Marburg virus copy B and Sudan virus are highlighted with a black
circle. The projecting �17-�18 shelf in Marburg virus is apparent on the left, and the position of the Marburg virus VP24 N terminus on the right. (B) Rotation
of the superimposed structures so that differences in structure in �17-�18 are apparent. In the ebolaviruses, the equivalent residues do not make an extended shelf
but instead form shorter strands connected by a loop/helical structure. (C) Marburg virus VP24 is illustrated in gray, oriented as described for panel A. VP24
residues conserved across the filovirus family (Marburg and five ebolaviruses) are colored dark blue; those visible in this view are labeled. Conservation in VP24
focuses on face 3, the N terminus, and the pocket at the base connecting faces 1 and 3. Figures were created using PyMol (Delano Scientific) (34).
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and structure factors identified in this study have been deposited
in the Protein Data Bank under accession number 4OR8.
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